靜電紡絲具有工藝簡單、材料體系廣泛、環境友好等特點,是制備連續納米纖維最有效的方法之一。所制備的納米纖維具有結構可控、成分可調等特點,在過濾材料、生物支架、藥物載體、傳感、復合材料等領域都顯示出誘人的應用前景。特別是其巨大的納米表面和網絡孔隙結構(以聚乙烯吡咯烷酮(PVP)為例,形貌見圖3)可調等優勢,在超級電容器領域倍受親睞。本文對近年來靜電紡絲技術在超級電容器電極材料和隔膜材料的研究進行綜述,并展望其應用前景。
1靜電紡絲技術制備電極材料
1.1碳基電極材料
碳基電極材料因具有價格低廉、環境友好、結構穩定、性價比等優勢而備受青睞。常見的碳基電極材料有:活性炭、碳纖維、碳納米管、碳氣凝膠等。制備方法有:催化化學氣相沉積、激光氣化、電弧放電、模板法等。納米材料因獨特的納米尺寸因素,使得它具有一般材料所不具備的超大比表面積,而靜電紡絲是制備納米級碳纖維最簡單的工藝之一。因此,無論是從成本還是工藝而言,
靜電紡絲技術都是制備理想碳基電極材料的重要方法。研究表明,聚丙烯腈(PAN)因成絲性能好、含碳量高,而成為靜電紡制備碳納米纖維最常用的聚合物前驅體。靜電紡絲制取碳納米纖維需經靜電紡)聚合物納米纖維)固化)碳化)碳纖維的工藝過程,其中碳化溫度的選擇對電極材料的電容性能也將產生影響,Ji等研究表明,700e碳化所得的碳材料較1000e時所得碳材料具有更好的電容保持性能。
Kim等利用靜電紡絲技術制取PAN納米纖維,經固化)碳化)水蒸氣活化處理后得到活化的碳納米纖維(AC-NF),其表面積可達1230m2˙g-1,在KOH電解質下比電容量為175F˙g-1;Park等利用上述相同工藝,電紡聚苯并咪唑(PBI)制備碳納米纖維,其比表面積可達1220m2˙g-1,比電容量為178F˙g-1。